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A B S T R A C T

Individuals with Alzheimer’s disease (AD) dementia exhibit significant heterogeneity across clinical symptoms,
atrophy patterns, and spatial distribution of Tau deposition. Most previous studies of AD heterogeneity have
focused on atypical clinical subtypes, defined subtypes with a single modality, or restricted their analyses to a
priori brain regions and cognitive tests. Here, we considered a data-driven hierarchical Bayesian model to identify
latent factors from atrophy patterns and cognitive deficits simultaneously, thus exploiting the rich dimensionality
within each modality. Unlike most previous studies, our model allows each factor to be expressed to varying
degrees within an individual, in order to reflect potential multiple co-existing pathologies.

By applying our model to ADNI-GO/2 AD dementia participants, we found three atrophy-cognitive factors. The
first factor was associated with medial temporal lobe atrophy, episodic memory deficits and disorientation to
time/place (“MTL-Memory”). The second factor was associated with lateral temporal atrophy and language
deficits (“Lateral Temporal-Language”). The third factor was associated with atrophy in posterior bilateral cortex,
and visuospatial executive function deficits (“Posterior Cortical-Executive”). While the MTL-Memory and Poste-
rior Cortical-Executive factors were discussed in previous literature, the Lateral Temporal-Language factor is novel
and emerged only by considering atrophy and cognition jointly. Several analyses were performed to ensure
generalizability, replicability and stability of the estimated factors. First, the factors generalized to new partici-
pants within a 10-fold cross-validation of ADNI-GO/2 AD dementia participants. Second, the factors were
replicated in an independent ADNI-1 AD dementia cohort. Third, factor loadings of ADNI-GO/2 AD dementia
participants were longitudinally stable, suggesting that these factors capture heterogeneity across patients, rather
than longitudinal disease progression. Fourth, the model outperformed canonical correlation analysis at capturing
associations between atrophy patterns and cognitive deficits.

To explore the influence of the factors early in the disease process, factor loadings were estimated in ADNI-GO/
2 mild cognitively impaired (MCI) participants. Although the associations between the atrophy patterns and
cognitive profiles were weak in MCI compared to AD, we found that factor loadings were associated with inter-
individual regional variation in Tau uptake. Taken together, these results suggest that distinct atrophy-cognitive
patterns exist in typical Alzheimer’s disease, and are associated with distinct patterns of Tau depositions before
clinical dementia emerges.
titute & MNP National University of Singapore, Singapore.
Yeo).
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu/). As
to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of
s can be found at https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

3
rm 23 June 2019; Accepted 21 July 2019

.

mailto:thomas.yeo@nus.edu.sg
https://adni.loni.usc.edu/
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2019.116043&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.116043
https://doi.org/10.1016/j.neuroimage.2019.116043


N. Sun et al. NeuroImage 201 (2019) 116043
1. Introduction

Alzheimer’s disease (AD) is a devasting neurodegenerative disease
and the most common cause of dementia. Although AD commonly pre-
sents as an amnestic syndrome (Scheltens et al., 2016), there is signifi-
cant heterogeneity across individuals. For example, there exists multiple
AD variants involving atypical clinical symptoms, such as visuospatial or
language deficits (Lam et al., 2013; Lehmann et al., 2013). These atypical
dysfunctions are often accompanied by corresponding atrophy patterns
and tau deposition patterns. For example, participants with “visual
variant” (posterior cortical atrophy, PCA) AD dementia might exhibit
greater atrophy and tau deposition in posterior cortical regions (Ossen-
koppele et al., 2015, 2016; Phillips et al., 2018). On the other hand,
participants with “language variant” (logopenic aphasia, LPA) AD de-
mentia might exhibit greater atrophy and tau deposition in temporal or
parietal regions (Gorno-Tempini et al., 2011; Ossenkoppele et al., 2016;
Phillips et al., 2018).

While the above studies focused on atypical clinically-defined AD
subtypes, there is also heterogeneity within typical AD dementia (pa-
tients not clearly diagnosed with an atypical AD variant such as PCA or
LPA). In cohorts comprising mostly typical AD dementia participants
(e.g., ADNI), studies have demonstrated that participants exhibit distinct
atrophy patterns or subtypes (Noh et al., 2014; Byun et al., 2015; Ferreira
et al., 2017; Risacher et al., 2017; Young et al., 2018). Although details
differ across studies, two common atrophy subtypes that have emerged
across studies are defined by medial temporal or cortical atrophy (Noh
et al., 2014; Byun et al., 2015; Zhang et al., 2016; Ferreira et al., 2017;
Young et al., 2018). A less common subtype to be reported involves at-
rophy of the striatum, thalamus, and cerebellum (Zhang et al., 2016;
Young et al., 2018). Unlike atypical clinically-defined AD variants, cor-
respondences between atrophy subtypes and cognitive domains in the
context of typical AD remain unclear, with most studies reporting worse
overall cognition and faster disease progression in cortical subtypes (Noh
et al., 2014; Byun et al., 2015; Risacher et al., 2017; but see Ferreira et al.,
2017). An exception is our previous study, which found that AD dementia
participants with the medial temporal atrophy subtype suffered worse
memory deficits, while AD dementia participants with the cortical atro-
phy subtype suffered worse executive function deficits (Zhang et al.,
2016). However, the subcortical atrophy subtype was not associated with
a specific cognitive domain (Zhang et al., 2016).

The relatively weak correspondence between atrophy subtypes and
cognitive domains in typical AD dementia highlights a need for
improvement in subtyping algorithms. Previous studies have defined
subtypes solely based on brain atrophy (Noh et al., 2014; Byun et al.,
2015; Zhang et al., 2016; Ferreira et al., 2017; Young et al., 2018) fol-
lowed by post-hoc associations with cognitive scores. Here, we proposed
an extension of our previous model (Zhang et al., 2016) to estimate
subtypes using structural MRI and neuropsychological testing scores
simultaneously, identifying latent factors associated with distinct
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patterns of atrophy and cognitive deficits (Fig. 1). The advantage of
combining both modalities is that the associations between atrophy
patterns and cognitive deficits are automatically encouraged by the
model. Thus, this approach enabled a more thorough investigation of
atrophy and cognitive profiles, rather than restricting analyses to previ-
ously defined composite measures of cognition (Zhang et al., 2016). This
approach allows the possibility of new atrophy-cognitive factors
emerging as a result of considering both atrophy and cognitive deficits
simultaneously, thus providing insights into AD heterogeneity.

Consistent with our previous work (Zhang et al., 2016), a key feature
of our modeling approach is that it allows the possibility that multiple
latent factors are expressed to varying degrees within an individual. This
is motivated by an extensive literature suggesting multiple etiologies
underlying disease heterogeneity that are not mutually exclusive
(Schneider et al., 2007, 2009; Dickerson and Wolk, 2011; Murray et al.,
2011; Franklin et al., 2015; Coutu et al., 2016; Ossenkoppele et al.,
2016). For example, the atrophy-cognitive profiles of a patient might be
80% owing to factor 1, 15% to factor 2, and 5% to factor 3, whereas the
atrophy-cognitive profiles of another patient might be 30% owing to
factor 1, 65% to factor 2, and 5% to factor 3. This is in contrast to pre-
vious “winner-takes-all” subtyping studies, in which a participant is
assigned to a single subtype (Noh et al., 2014; Byun et al., 2015; Ferreira
et al., 2017). This motivates our use of the term “factors”, rather than
“subtypes”.

Because typical AD dementia has a long prodromal stage, we also
investigated whether associations between atrophy patterns and cogni-
tive profiles estimated from AD dementia participants (Fig. 1) could also
be discerned in β-Amyloid positive (Aβþ) MCI participants. Given that
brain atrophy and cognitive deficits are thought to occur later in the
disease process (Jack et al., 2010, 2013), one might expect weaker as-
sociations between atrophy patterns and cognitive profiles in the MCI
participants than in AD dementia participants. By contrast, Tau-mediated
injury is thought to occur earlier in the disease process (Jack et al., 2010,
2013). The advent of 18F-Flortaucipir, a PET tracer with high affinity for
paired helical filament Tau, provides an exciting opportunity to investi-
gate regional NFTs in vivo (Chien et al., 2013). Thus, we also investigated
whether the atrophy-cognitive factors (Fig. 1) were associated with
spatial patterns of Tau deposition in MCI participants.

Many studies have found strong relationships between tau de-
positions and cognitive deficits (Murray et al., 2011; Bejanin et al., 2017;
Chiotis et al., 2017; Gordon et al., 2019). In the case of atypical
clinically-defined AD subtypes, studies have demonstrated strong corre-
spondences between tau deposition patterns and cognitive domains
(Ossenkoppele et al., 2016; Phillips et al., 2018). For example, increased
18F-Flortaucipir uptake in the hippocampus, bilateral occipital lobe and
left temporoparietal regions were associated with worse memory, vi-
suospatial and language functions respectively (Ossenkoppele et al.,
2016). However, in cohorts involving predominantly typical AD partic-
ipants or only elderly nondemented participants, the correspondences
Fig. 1. A Bayesian model of AD dementia patients,
latent factors, brain structural MRI (sMRI) and
cognitive scores. Our model allows each patient to
express one or more latent factors. The factors are
associated with distinct (but possibly overlapping)
patterns of brain atrophy, as well as distinct (but
possibly overlapping) profiles of cognitive deficits.
The estimated model parameters are the probability
that a patient expresses a particular factor (i.e.,
Pr(Factor | Patient)), the probability that a factor is
associated with atrophy at a voxel (i.e., Pr(Voxel |
Factor)) and the probability that a factor is associated
with a cognitive score (i.e., Pr(Score | Factor)).



Fig. 2. Overview of data and analyses. The yellow panel shows data from different ADNI cohorts and modalities. The blue panel shows the three stages of analyses
in this study. Arrows indicate the data used in each analysis. We note that if Aβþ was not specifically mentioned for a particular cohort, then this implied that the
participants were not filtered based on Aβþ. The main reason for not filtering based on Aβþ was to maximize sample size.

2 Unfortunately, there were only 21 AD dementia participants with Tau PET,
so we did not perform an analysis on this subgroup because of the small sample
size.
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between the spatial patterns of Tau deposition and cognitive domains are
a lot less clear, with most studies showing greater global tau deposition
associated with multiple cognitive domains, or greater regional tau de-
positions associated with global cognitive deficits (Johnson et al., 2016;
Sch€oll et al., 2017; Maass et al., 2017a; Mattsson et al., 2017; Aschen-
brenner et al., 2018). Thus, our study seeks to extend these previous
studies by clarifying whether the distinct tau deposition patterns are
associated with different cognitive domains in MCI participants.

2. Materials and methods

2.1. Overview

There are three stages of analyses (Fig. 2). First, a hierarchical
multimodal Bayesian model (Fig. 1) was applied to AD dementia par-
ticipants from the ADNI-GO/2 (ADNI-GO and ADNI-2) database to
extract factors based on patterns of atrophy and cognitive performance.
The relationships between factor loadings and patient characteristics
(e.g., age) were then examined. Second, we tested the generalizability,
replicability and stability of the estimated factors, involving 10-fold
cross-validation within ADNI-GO/2, independent replication using
ADNI-1 and longitudinal data in ADNI-GO/2. We also compared our
approach with canonical correlation analysis (CCA), which has been
widely used to discover brain-behavior relationships (Smith et al., 2015).

Third, to explore heterogeneity earlier in the disease process, we
applied our model to ADNI-GO/2 Aβþ MCI participants to extract factor
loadings. Longitudinal stability of the factor loadings was examined.
Relationships between atrophy and cognitive loadings were also
explored. Finally, the association between factor loadings and the spatial
pattern of Tau was also investigated in ADNI-2/3 MCI participants with
available Tau PET. To maximize the number of participants, all MCI
participants with available Tau PET were considered regardless of
3

amyloid status2.
2.2. Data overview

This study utilized data from the ADNI database (http://adni.loni
.usc.edu/), which was established as a public-private partnership, led
by Dr. Michael W. Weiner. ADNI’s main aim has been to test whether
serial MRI, PET, other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of
MCI and early AD. Written consent was obtained from all participants,
and the study was approved by the Institutional Review Board at each
participating institution. Demographic and clinical characteristics are
presented in Table 1.

According to ADNI’s inclusion criteria (page 27 of https://adni.lon
i.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf),
participants must be at least 55 years old when diagnosed with AD de-
mentia. ADNI also excluded participants whose MMSE were less than 20.
In practice, AD dementia participants were on average 75 years old and
85% of the AD dementia participants were above 65 years old (Table 1).
Given that the cognitive tests in ADNI were not designed to detect
atypical clinically-defined AD subtypes (e.g., logopenic subtypes), we
could not rule out the presence of atypical clinically-defined AD subtypes.
However, atypical AD variants usually have faster disease progression,
early disease onset and are relatively rare. Therefore, we expect the
occurrence of atypical AD variants in the ADNI cohort to be relatively low
given the age range of ADNI AD dementia participants and the exclusion
of participants with MMSE less than 20. Thus, we interpret the ADNI

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf


Table 1
Demographic and clinical characteristics of the various ADNI cohorts utilized in this study. Abbreviations: AD¼Alzheimer’s disease, MCI¼Mild cognitive impairment,
CN¼Cognitive normal, Aβ+¼Amyloid beta positive, APOE¼Apolipoprotein E, MMSE¼Mini-mental state examination, CDR¼Clinical dementia rating. Values represent
mean (SD) min�max. The square brackets indicate the number of participants with available data. For example, [N¼146] indicates that there were only 146 (out of a
total of 149) ADNI-GO/2 AD participants with known amyloid status.

ADNI-GO/2 baseline ADNI-1 baseline

AD MCI CN AD MCI CN

N 149 454 292 170 385 222
Age at MRI acquisition 74.6 (8.2)

55.7�90.3
71.7 (7.5)
55.0�91.4

73.0 (6.0)
56.2�90.0

75.5 (7.3)
55.2�91.0

74.9 (7.4)
54.8�89.3

76.0 (5.1)
60.0�89.7

Age at AD onset � � � 72.0 (7.8)
53.0�91.0
[N¼164]

� �

% baseline age > 70 or
% age at AD onset > 65

113/149
75.84%

� � 137/164
83.54%

� �

Sex (% male) 58.4 54.2 46.2 50.6 64.2 51.4
Education (years) 15.8 (2.7)

9.0�20.0
16.1 (2.7)
9.0�20.0

16.6 (2.5)
8.0�20.0

14.7 (3.1)
6.0�20.0

15.7 (2.9)
6.0�20.0

16.0 (2.9)
6.0�20.0

% Aβ+ 88.4
[N¼146]

55.5
[N¼445]

33.5
[N¼284]

90.1
[N¼91]

75.4
[N¼191]

37.3
[N¼110]

% APOE ε4 carriers 67.6
[N¼145]

47.6
[N¼450]

29.6
[N¼291]

64.1
[N¼170]

53.5
[N¼385]

26.6
[N¼222]

MMSE 23.1 (2.1)
19.0�26.0

28.1 (1.7)
23.0�30.0

29.0 (1.2)
24.0�30.0

23.5 (2.0)
20.0�28.0

27.0 (1.8)
23.0�30.0

29.1 (1.0)
25.0�30.0

CDR 0.8 (0.3)
0.5�2.0

0.5 (0.0)
0.0�1.0

0.0 (0.0)
0.0�0.5

0.7 (0.3)
0.5�1.0

0.5 (0.0)
0.0�0.5

0.0 (0.0)
0.0�0.0

ADNI-GO/2 month 12 ADNI-2/3 Tau PET

AD MCI CN AD MCI CN

N 114 353 201 � 76 �
Age at MRI acquisition 75.2 (7.7)

56.4�91.6
73.1 (7.3)
56.7�92.5

73.7 (6.2)
56.0�90.2

76.4 (7.4)
57.8�92.2

Sex (% male) 60.5 56.4 46.8 56.6
Education (years) 15.9 (2.6)

9.0�20.0
[N¼114]

16.2 (2.7)
10.0�20.0
[N¼353]

16.6 (2.5)
12.0�20.0
[N¼201]

16.2 (2.9)
8.0�20.0
[N¼64]

% Aβ+ � � � 51.6
[N¼62]

% APOE ε4 carriers 75.4
[N¼114]

44.2
[N¼353]

29.4
[N¼201]

32.8
[N¼64]

MMSE 22.7 (3.8)
11.0�30.0

27.8 (2.0)
20.0�30.0

28.8 (1.4)
20.0�30.0

27.9 (2.1)
22.0�30.0

CDR 0.9 (0.4)
0.5�2.0
[N¼113]

0.5 (0.1)
0.0�1.0
[N¼349]

0.1 (0.2)
0.0�0.5
[N¼196]

0.4 (0.2)
0.0�1.0
[N¼76]
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cohort as comprising predominantly typical late-onset AD dementia
participants, consistent with the interpretation of some previous work
with ADNI (Meda et al., 2012; Iturria-Medina et al., 2017). It is also
worth noting that late-onset AD is typically defined as being diagnosed
with AD dementia at 65 years or older (American Psychiatric Association,
2013). Unfortunately, the age of onset was not available in ADNI-GO/2,
while amyloid status of many participants was not available in ADNI-1.
Since the gap between the age of onset and baseline age was around
3.5 years in ADNI-1 (Table 1), Section 3.1 will include control analyses
involving ADNI-GO/2 Aβþ AD dementia participants, who were at least
70 years old at baseline. Thus, the sensitivity analysis in Section 3.1 was
performed to ensure that factors derived with the larger sample of AD
participants were not driven by heterogeneity within Aβ- AD and/or the
subset of younger ADNI participants with AD that could reflect tradi-
tional atypical presentations.

2.3. Latent factors estimation & characterization

2.3.1. Structural MRI
Baseline MRI data from 158 AD dementia patients, 489 MCI partici-

pants, and 311 cognitively normal (CN) participants from ADNI-GO/2
were used to define a study specific template for voxel-based
morphometry (VBM; Fig. 2). All structural MRI (T1-weighted, 3.0T)
4

were acquired with Sagittal MP-RAGE/IR-SPGR sequence and followed a
standardized preprocessing protocol: Gradwarp, B1 non-uniformity and
N3 correction (http://adni.loni.usc.edu/methods/mri-analysis/mri-pr
e-processing/).

The structural MRI were analyzed using the CAT12 VBM software
(http://www.neuro.uni-jena.de/cat/), yielding subject-specific gray-
matter (GM) density maps in MNI space. We then applied log10 trans-
formation to the GM density images and regressed the effects of age, sex
and intracranial volume (ICV) from all participants. Regression co-
efficients were estimated from only CN participants to retain any inter-
action between AD and participants’ characteristics (e.g., interaction
between AD and age). The regression coefficients were then utilized to
compute residuals for all participants. For more details about the VBM
and regression procedures, see Supplementary Methods S1.

2.3.2. Cognitive scores
Cognitive scores from the Alzheimer’s Disease Assessment Scale-

Cognitive (ADAS-Cog13), Mini Mental State Exam (MMSE), Boston
Naming Test, animal category of Category Fluency Test, Clock Drawing
Test, Clock Copying Test, Logical Memory, Rey Auditory Verbal Learning
Test and Trail Making Test were considered. See https://adni.loni.usc
.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf for
detailed descriptions of these tests. In the case of MMSE, subsets of the 30

http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
http://www.neuro.uni-jena.de/cat/
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf


Table 2
Summary of terminologies and their descriptions.

Terminology Description

Atrophy Pattern Probability that a latent factor is associated with atrophy at a
voxel

[Pr(Voxel | Factor)]
Cognitive Profile Probability that a latent factor is associated with a cognitive

score deficit
[Pr(Score | Factor)]

Atrophy-Cognitive
Loading

Probability that a participant expresses a latent factor based
on the patient’s brain atrophy and cognitive scores

[Pr(Factor | Participant)]
Atrophy Loading Probability that a participant expresses a latent factor based

only the participant’s brain atrophy
[Pr(Factor | Participant’s Atrophy)]

Cognitive Loading Probability that a participant expresses a latent factor based
only on the participant’s cognitive scores
[Pr(Factor | Participant’s Cognition)]
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item scores were summed together into 8 domains (Table S1; Folstein
et al., 1975): “MMSE: Orientation to time”, “MMSE: Orientation to
place”, “MMSE: Immediate Recall”, “MMSE: Attention”, “MMSE: Delayed
Recall”, “MMSE: Language”, “MMSE: Repetition” and “MMSE: Complex
Commands”. This resulted in a total of 32 scores (Table S1).

Table S5 shows the standard deviation of the cognitive scores across
CN participants within the ADNI-1 and ADNI-GO/2 cohorts. The five
cognitive scores with lowest variance were consistent across both cohorts
and corresponded to “ADAS: Recall Instructions”, “MMSE: Language”,
“ADAS: Comprehension”, “MMSE: Immediate Recall” and “ADAS:
Spoken Language”. Among these five cognitive scores with limited range,
the following scores were combined since they reflect similar cognitive
functions: (1) “MMSE: Language” and “ADAS: Naming”, (2) “MMSE:
Immediate Recall” and “MMSE: Delayed Recall” and (3) “ADAS: Spoken
Language” and “ADAS: Comprehension”. We did not think that the
remaining cognitive score “ADAS: Recall Instructions” was tapping into
similar cognitive function as other scores, so we simply remove the score
from consideration. The variance of the combined scores are shown in
Table S6. Thus, we ended up with 28 scores (Table S3).

Among the 158 ADNI-GO/2 AD dementia participants, 9 were
excluded because more than 10 cognitive scores were missing. Of the
remaining 149 participants, 124 had all scores, while 25 participants had
less than five missing scores. The general linear model (GLM) was used to
impute the missing scores in the 25 participants (Section 2.7 of Enders,
2010). Briefly, for each participant with missing scores, we fitted a GLM
to all participants (CN, MCI and AD) without missing scores, where the
observed scores were independent variables and the missing scores were
dependent variables. The estimated regression coefficients were used to
fill in the missing scores of the participant with missing scores.

Consistent with the structural MRI processing, we regressed out ef-
fects of age, sex and ICV from all scores using regression coefficients
estimated from the CN participants. See Supplementary Methods S1 for
details.

2.3.3. Multimodal bayesian model
We have previously utilized a hierarchical Bayesian model, latent

Dirichlet allocation (LDA; Blei et al., 2003), to encode the premise that
each AD patient expresses one or more latent factors, associated with
distinct patterns of brain atrophy (Zhang et al., 2016). LDA (and its
variants) have also been successfully used to extract overlapping brain
networks from functional MRI (Yeo et al., 2014) and meta-analytic data
(Bertolero et al., 2015; Yeo et al., 2015). In the current analysis, we
considered an extension of the LDA model to incorporate two modalities
(gray matter atrophy and neuropsychological testing scores), herein
referred to as multi-modality LDA (MMLDA). In this framework, each AD
patient expresses one or more latent factors, each of which is associated
with distinct (but possibly overlapping) atrophy patterns and distinct
(but possibly overlapping) cognitive deficits (Fig. 1). The model is
mathematically equivalent to that proposed by Putthividhya et al.
(2007). Details are found in Supplementary Methods S2 and S3.

We considered VBM and cognitive scores of all ADNI-GO/2 partici-
pants with AD dementia (N ¼ 149). Since most participants were Aβþ
(88%; Table 1), we did not exclude the small number of Aβ- participants,
in order to maximize the number of participants. The VBM and cognitive
scores of 149 ADNI-GO/2 participants with AD dementia were first z-
normalized with respect to the CN participants (see Supplementary
Methods S4 for details). Given the normalized VBM and cognitive scores
of the 149 participants, as well as a predefined number of latent factors K,
a variational expectation-maximization (VEM) algorithm was used to
estimate the probability of a patient expressing a latent factor [Pr(Factor |
Patient)], probability that a factor was associated with atrophy at a voxel
[Pr(Voxel | Factor)] and the probability that a factor was associated with
a cognitive score [Pr(Score | Factor)]. See Table 2 for a summary of the
terminologies.

An important model parameter is the number of latent factors K. We
considered K ¼ 2, 3 or 4. As will be explained in the Results, the four-
5

factor solution was not interpretable, and so we did not explore
beyond four factors. For the remainder of this paper, we will largely focus
on the three-factor solution.

2.3.4. Visualization
The probability of a voxel being associated with a factor (Pr(Voxel |

Factor)) can be thought of as a brain map. For visualization, the brain
map is projected from MNI152 (Figs. S2 and S10) to fsaverage space
(Figs. 3 and S9; Wu et al., 2018). The fsaverage space is the official
FreeSurfer surface coordinate system obtained by averaging the cortical
surfaces of 40 participants (Dale et al., 1999; Fischl et al., 1999a).
Subcortical structures are illustrated using coronal slices. Multiple cor-
onal slices are also shown in supplemental figures.

2.3.5. Relationship between factors & patient characteristics
We explored how patient characteristics (age at time of structural MRI

scan, education, Amyloid, and APOE genotype) varied across the three
latent factors using GLMs for continuous variables and logistic regression
for binary variables. In all cases, patient characteristics were the inde-
pendent variables, while factor loadings were the dependent variables.
Statistical tests were then performed to determine if there were overall
differences across all factors, and whether there were differences be-
tween pairs of factors. See Supplementary Methods S5 for details.
2.4. Generalization, replication & stability

2.4.1. Inference of atrophy loading, cognitive loading or atrophy-cognitive
loading

After the probabilistic atrophy maps Pr(Voxel | Factor) and probabi-
listic cognitive deficits Pr(Score | Factor) were estimated, they could be
used to infer the factor composition (or loading) of a new participant
using only atrophy [“atrophy loading” or Pr(Factor | Atrophy of Partic-
ipant)], only cognitive scores [“cognitive loading” or Pr(Factor | Cogni-
tion of Participant)] or both atrophy and cognitive scores [“atrophy-
cognitive loading” or Pr(Factor | Participant)]. See Table 2 for a summary
of the terminologies.

2.4.2. 10-fold cross-validation
To test whether the association between cognitive profiles and atro-

phy patterns can generalize to new participants within the same dataset,
we performed 10-fold cross-validation among the 149 ADNI-GO/2 AD
dementia participants. Briefly, this involves randomly splitting the 149
participants into ten folds (groups) of roughly the same size. For each test
fold, the multimodal Bayesian model parameters were estimated from
the remaining nine training folds, and then used to infer factor loadings
in the test fold participants using only atrophy (“atrophy loading”) or
only cognitive scores (“cognitive loading”). The prediction quality is
measured by the correlation between atrophy and cognitive loadings
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across the test fold participants.

2.4.3. Replication in ADNI-1
The multimodal Bayesian model was also applied to an independent

cohort of 170 ADNI-1 patients with AD dementia to see if the resulting
factors were similar across ADNI cohorts. The model parameters were
estimated completely independently from the previous analyses
involving ADNI-GO/2 participants.

2.4.4. Longitudinal stability of factor loadings in AD dementia
To ensure the factors were not simply reflecting disease stages, we

examined longitudinal factor stability. More specifically, we considered
the subset of 149 AD dementia (from the ADNI-GO/2 cohort) with one-
year follow-up structural MRI and the full set of cognitive scores,
yielding 79 dementia participants. Factor loadings of the participants
were inferred using only structural MRI (i.e., atrophy loading), only
cognitive scores (i.e., cognitive loading) or both structural MRI and
cognitive scores (i.e., atrophy-cognitive loading) at both time points
separately. If the factors mostly reflected disease stages (rather than
subtypes), then we expected a big longitudinal shift in the factor loadings
(e.g., factor 3 loading might increase over time).

2.4.5. Comparison with canonical correlation analysis (CCA)
CCA is a multivariate data-driven statistical technique that maximizes

the correlations between two data modalities by deriving canonical
components, which are optimal linear combinations of the original data.
Because CCA has been widely used to discover brain-behavior relation-
ships (Smith et al., 2015), we applied CCA to the ADNI-GO/2 data to
investigate the atrophy-cognitive modes extracted with this alternative
method (Fig. 1). For more details, see Supplementary Methods S6.

2.5. MCI heterogeneity

AD has a long prodromal stage before overt dementia. Therefore, we
were interested in exploring whether the atrophy-cognitive factors esti-
mated from the AD dementia participants were relevant in an earlier
disease stage (i.e., MCI).

2.5.1. Longitudinal stability of factor loadings in Aβþ MCI
Similar to Section 2.4.4, we examined longitudinal factor stability to

ensure the factors were not simply reflecting disease stages. Of the 454
ADNI-GO/2 MCI participants, 445 had Amyloid PET data available, and
247 of 445 were Aβþ (see Supplementary Methods S9 for details). We
further considered the subset of participants with one-year follow-up
structural MRI and the full set of cognitive scores, yielding 219 AβþMCI
participants. The multimodal Bayesian model parameters estimated from
the ADNI-GO/2 AD dementia participants were used to infer factor
loadings of the participants using only structural MRI (i.e., atrophy
loading), only cognitive scores (i.e., cognitive loading) or both structural
MRI and cognitive scores (i.e., atrophy-cognitive) at both time points
separately. If the factors mostly reflected disease stages (rather than
subtypes), then we expect a longitudinal shift in the factor loadings over
time.

2.5.2. Relationships between atrophy & cognitive loadings in MCI
To explore the associations between atrophy patterns and cognitive

deficits in MCI participants, the multimodal Bayesian model parameters
estimated from the ADNI-GO/2 AD dementia participants were used to
infer factor loadings in the 247 Aβþ MCI participants using only atrophy
(“atrophy loading”) or only cognitive scores (“cognitive loading”). To
examine the relationships between cognitive and atrophy loadings, GLM
was utilized. For example, factor 1 cognitive loading would be the
dependent variable, while the atrophy loadings would be the indepen-
dent variables. Age and sex were included as nuisance variables. To be
more explicit, let us denote memory loading by h, medial temporal
loading bym, lateral temporal loading by l, and posterior cortical loading
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by c. Age x1 and sex x2 were included as nuisance variables, so the final
GLM was h ¼ β0 þ βl lþ βccþ β1x1 þ β2x2 þ ε, where β's denote the
regression coefficients, and ε is the residual. The medial temporal loading
m was implicitly modeled because m þ lþ c ¼ 1. The GLM was repeated
with factor 2 cognitive loading and then factor 3 cognitive loading as the
dependent variables. For each GLM, statistical tests were performed to
determine if there were overall differences across all factors, and whether
there were differences between pairs of factors. See Supplementary
Methods S7 for details.

2.5.3. Relationships between factors & tau in MCI
There were 102 participants with MCI from ADNI-2/3 (ADNI-2 and

ADNI-3), who had accompanying 18F-Flortaucipir PET scans. Participants
were scanned beginning at 75min post-injection, for 30min (6� 5min
frames) and each scan underwent the following preprocessing steps: Co-
registered Dynamic, Averaged, Standardized Image and Voxel Size and
Uniform Resolution (http://adni.loni.usc.edu/methods/pet-analysis/pre
-processing/).

For ADNI-2 participants, the PET scan was not acquired at baseline,
but during a follow-up visit. Since structural MRI and cognitive tests were
not collected for every follow-up visit, this resulted in substantial missing
data. In total, 26 participants were excluded because of missing structural
MRI or more than five missing cognitive scores. Of the remaining 76
participants, 29 participants had all cognitive scores, while 47 partici-
pants had three or less missing scores. Like before, missing scores were
imputed using the GLM based on all ADNI-GO/2 participants (CN, MCI
and AD) without missing scores. The participants were not filtered based
on Amyloid status because including only Aβþ participants will lead to
too few participants (Table 1).

All structural MR images were processed using FreeSurfer 6.0 (https:
//surfer.nmr.mgh.harvard.edu/) to obtain the parcellation of the cere-
bellum in native T1 space (Dale et al., 1999; Fischl et al., 1999a, b; Fischl
et al., 2001; S�egonne et al., 2007; Greve and Fischl, 2009). All PET im-
ages were then co-registered to the corresponding T1 images. Voxelwise
standardized uptake value ratio (SUVR) images were created by dividing
each voxel by the mean value in the cerebellar gray matter. Finally, the
PET images were transformed to the same template space as the VBM
analysis and downsampled to 2mm (which was the same resolution as
the GM density images).

To investigate the relationships between the spatial heterogeneity of
Tau depositions and factor loadings, each probabilistic atrophy map
(Pr(Voxel | Factor)) was thresholded to obtain a mask containing the top
5% of the voxels (Fig. S1). The SUVR signal was averaged across voxels
within each mask to obtain the regional Tau deposition for each factor.
Similar results were obtained if we utilized a 2.5% threshold or a 10%
threshold.

To determine if the regional Tau deposition were associated with the
factor loadings, the GLM was applied for each factor loading. For
example, the atrophy-cognitive loading of factor 1 (Pr(Factor 1 | Patient))
would be the dependent variable, while the Tau deposition in each of the
three atrophied regions would be the independent variables using the
5%-thresholded masks described above. Age and sex were included as
nuisance variables. For each GLM, statistical tests were performed to
determine if there were overall differences across all factors, and whether
there were differences between pairs of factors. See Supplementary
Methods S8 for details.

Finally, for the purpose of visualization, at each voxel, we regressed
out age and sex from the Tau PET signal and then correlated the residual
with the atrophy-cognitive factor loadings across participants, resulting
in three Tau-atrophy-cognitive maps. For visualization, the maps were
projected to the FreeSurfer fsaverage surface (Wu et al., 2018).
Furthermore, we correlated the Tau-atrophy-cognitive maps (Fig. S18)
with the atrophy patterns (Fig. 3) and utilized permutation test to
determine the significance of the correlations.

http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/


Fig. 3. Probabilistic atrophy maps of three latent factors in ADNI-GO/2.
Brighter color indicates higher probability of atrophy at that voxel for a
particular factor (i.e., Pr(Voxel | Factor)). Each of the three factors was associ-
ated with a distinct pattern of brain atrophy. Coronal slices are found in Fig. S2.
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2.6. Statistical analyses

In the case of logistic regression, the likelihood ratio test was
employed to test for differences between factors. In the case of GLMs, the
F-test was employed. In the case of Pearson’s correlations (e.g., 10-fold
cross-validation), p values were computed using the Student’s t distri-
bution. All tests were two-sided. Furthermore, since multiple statistical
tests (patients’ characteristics analyses, 10-fold cross-validation, associ-
ations between atrophy and cognitive loadings among Aβþ MCI partic-
ipants, and associations between Tau deposition and factor loadings
among MCI participants) were performed in this study, all p values were
corrected using a false discovery rate (FDR) of q ¼ 0.05.
2.7. Code and data availability

The code used in this paper, study-specific VBM templates (ADNI-1
and ADNI-GO/2), atrophy-cognitive factors and factor loadings of par-
ticipants are publicly available at https://github.com/ThomasY
eoLab/CBIG/tree/master/stable_projects/disorder_subtypes/Sun2019_
7

ADJointFactors. Researchers can estimate factor loadings of new partic-
ipants based on our estimated model or re-estimate the model based on
their own subjects. The paper utilized data from the publicly available
ADNI database (http://adni.loni.usc.edu/data-samples/access-data/).

3. Results

3.1. Latent factor estimation & characterization

3.1.1. Latent atrophy-cognitive factors in AD dementia
Using a multimodal Bayesian model, we estimated three latent factors

from 149 ADNI-GO/2 AD dementia participants that captured covariance
between patterns of atrophy and cognitive testing scores. The three latent
factors involved distinct atrophy patterns (Fig. 3; Fig. S2) and corre-
sponding cognitive testing profiles (Fig. 4). The first factor was associated
with atrophy in the medial temporal lobe (MTL) and was associated with
episodic memory tests (delayed and immediate recall measures), as well
as orientation measures (“MTL-Memory”). The second factor was asso-
ciated with atrophy in left lateral temporal cortex and diffuse atrophy
across the default network, and was associated with multiple tests
assessing language (“Lateral Temporal-Language”). Finally, the third
factor was associated with atrophy in the posterior bilateral cortex
(including parietal and lateral temporal regions) and portions of frontal
cortex, and was associated with tests of executive function and visuo-
spatial function (“Posterior Cortical-Executive”).

As a control analysis, we re-estimated the three factors using a subset
of 97 Aβþ AD dementia participants greater than 70 years old. Correla-
tions between atrophy patterns from ADNI-GO/2 AD (Fig. S2) and ADNI-
GO/2 Aβþ AD participants with age > 70 (Fig. S3) were 0.93, 0.87 and
0.77 for factors 1, 2 and 3 respectively. Correlations between corre-
sponding cognitive profiles from ADNI-GO/2 AD (Fig. 4) and ADNI-GO/2
Aβþ AD (Fig. S4) participants with age> 70 were 0.99, 0.91 and 0.90 for
factors 1, 2 and 3 respectively. Given the strong agreement between the
original and control analyses, we chose to use the factors estimated from
all 149 ADNI-GO/2 AD dementia participants in the following analyses.

It is worth pointing out that Pr(Score | Factor) must sum to one over
all scores because it is a probability distribution. Therefore, if certain
cognitive tests from a particular cognitive domain were over-represented
in the dataset, then on average Pr(Score | Factor) for the particular
cognitive domain would be lower. Here, there were more cognitive tests
in ADNI involving memory and visuospatial executive function, so
Pr(Score | Factor) was generally lower for the Posterior Cortical-
Executive and MTL-Memory factors compared with the Lateral
Temporal-Language factor (Fig. 4).

3.1.2. Number of factors
An important model parameter is the number of latent factors. This is

an unsolved problem in machine learning with no consensus on the best
approach for estimating the number of factors. In this paper, we first
estimated the two-factor model and then continued to increase the
number of estimated factors as long as two criteria were satisfied. First,
we preferred more factors as long as the relationships between the at-
rophy pattern and cognitive profiles remained biologically plausible.
Because biological plausibility was subjective, we considered a second
quantitative criterion, which was that the atrophy-cognitive relation-
ships generalized to new participants within a 10-fold cross-validation
procedure (Section 3.2.1).

The two-factor model revealed two factors that were very similar to the
first and third factors of the three-factor model. More specifically, there
was one factor associatedwithmedial temporal atrophy (Figure S5A1) and
memory-related cognitive deficits (Figure S6B1), whereas the second
factor was associated with posterior cortical atrophy (Figure S5A2) and
visuospatial/executive function cognitive deficits (Figure S6B2). There-
fore, the two-factor estimates were biologically plausible. However, ac-
cording to the first criterion, we preferred the three-factor model to the
two-factor model because of the additional Lateral Temporal – Language

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/disorder_subtypes/Sun2019_ADJointFactors
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/disorder_subtypes/Sun2019_ADJointFactors
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/disorder_subtypes/Sun2019_ADJointFactors
http://adni.loni.usc.edu/data-samples/access-data/


Fig. 4. Probabilistic cognitive deficits of three latent factors in ADNI-GO/
2. Red bars indicate cognitive scores associated with memory (as defined by
Crane et al., 2012). Blue bars indicate cognitive scores associated with executive
function (as defined by Gibbons et al., 2012). The remaining cognitive scores
were colored black. Vertical axis corresponds to the probability of a cognitive
score being associated with a factor (i.e., Pr(Score | Factor)). Only the top 15
scores are shown. ADAS: Alzheimer’s Disease Assessment Scale; MMSE: Mini
Mental State Exam; CFT: Category Fluency Test; LM: Logical Memory; RAVLT:
Rey Auditory Verbal Learning Test; TMT: Trail Making Test.

Fig. 5. Factor loadings of 149 AD dementia patients. Each patient corre-
sponds to a dot, with location (in barycentric coordinates) representing the
factor loading. Color indicates Amyloid status: red for Aβþ, green for Aβ-, and
blue for unknown. Corners of the triangle represent pure factors; closer distance
to the respective corner indicates higher probability for the respective factor. (A)
Atrophy-cognitive loading estimated using both brain atrophy and cognitive
scores. “MTL-M” indicates Medial Temporal Lobe-Memory. “LT-L00 indicates
Lateral Temporal-Language. “PC-E00 indicates Posterior Cortical-Executive. (B)
Atrophy loading estimated using only structural MRI. (C) Cognitive loading
estimated using only cognitive scores. Most dots are far from the corners, sug-
gesting that most patients expressed multiple factors.
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factor. The three-factor model also generalized to new participants (Sec-
tion 3.2.1), which satisfied the second criterion.

On the other hand, the four-factor model revealed three factors
(Figures S7A1-3, S8B1-3), which were similar to factors in three-factor
model. However, the fourth factor was associated with medial tempo-
ral atrophy in addition to subcortical atrophy in the basal ganglia and
thalamus (Figure S7A4). Thus, the atrophy pattern was not constrained to
a known brain system. The fourth factor was also associated with a
mixture of deficits that appeared to cut across multiple cognitive domains
(Figure S8B4). Therefore, overall, we felt that the fourth atrophy-
cognitive factor did not seem biologically plausible. The fourth factor
also did not generalize to new participants (Section 3.2.1). Therefore, we
preferred the three-factor model to the four-factor model, and we did not
estimate the five-factor model.

3.1.3. Characteristics of factor loadings
Examination of factor loadings revealed that the majority of the 149

AD dementia participants expressed multiple latent atrophy factors
rather than predominantly expressing a single atrophy factor (Fig. 5).
Furthermore, there was no significant association between the factor
loading and education, sex, or APOE (Table S4). However, the third
factor (Posterior Cortical-Executive) was associated with younger age (at
time of scan) than the other two factors (p¼ 2e-4; Table S4).
8

3.2. Generalization, replication & stability

3.2.1. Atrophy pattern can be used to predict cognitive deficits with modest
accuracies

To test whether the atrophy pattern of an out-of-sample participant
could be used to predict his/her cognitive deficit profile, we performed
10-fold cross-validation among the AD dementia participants in ADNI-
GO/2. We found that greater medial temporal atrophy predicted worse
memory function with modest accuracy (Fig. 6; r¼ 0.34, p¼ 2e-5),
greater lateral temporal atrophy predicted worse language performance
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with modest accuracy (Fig. 6; r¼ 0.30, p¼ 2e-4), and greater posterior
cortical atrophy predicted worse visuospatial executive function with
modest accuracy (Fig. 6; r¼ 0.30, p¼ 3e-4). For 10-fold cross-validation
results for the four-factor model, see Supplementary Results S1.

3.2.2. Replication in ADNI-1
We investigated whether the factors found in ADNI-GO/2 could be

reproduced in an independent cohort of patients with AD from ADNI-1
(N¼ 170). We found that the cognitive profiles and atrophy patterns in
ADNI-1 (Figs. S9 and S11) were similar to ADNI-GO/2 (Figs. 3 and 4).
Although the replication was not perfect, the discrepancies likely re-
flected cohort differences, rather than an artifact of our approach (see
Supplementary Results S2).

3.2.3. Longitudinal stability of factor loadings in AD dementia
To determine whether factor expression remained stable over time,

we examined 79 dementia from ADNI-GO/2, who had both structural
MRI and the full set of cognitive scores in the one-year follow-up visit.
The factor loadings were highly correlated between the baseline and one-
year follow up, and linear fits were close to the y¼ x line, suggesting that
the factors were not merely reflecting disease progression (Fig. 7).
Interestingly, the atrophy loading (computed only using structural MRI)
were more reliable (greater Pearson’s correlations) than the cognitive
loading (computed only using cognitive scores).

3.2.4. Comparison with canonical correlation analysis (CCA)
We applied CCA to the ADNI-GO/2 data to investigate if meaningful

atrophy-cognitive modes could be obtained. Permutation testing did not
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reveal any significant CCA mode (p> 0.13). Nevertheless, we considered
the top three components and performed 10-fold cross-validation. None
of the CCA mode yielded successful prediction in the out-of-sample data
(Fig. S13).

3.3. MCI heterogeneity

3.3.1. Longitudinal stability of factor loadings in Aβþ MCI
Similar to Section 3.2.3, we examined 219 AβþMCI participants from

ADNI-GO/2, who had both structural MRI and the full set of cognitive
scores in the one-year follow-up visit. The factor loadings were highly
correlated between the baseline and one-year follow up, and linear fits
were close to the y ¼ x line, suggesting that the factors were not merely
reflecting disease progression (Fig. S15).

3.3.2. Atrophy and cognition in Aβþ MCI
Using the model defined in the ADNI-GO/2 participants with AD

dementia, we extracted factor compositions for the 247 Aβþ participants
with MCI. Like the AD dementia participants, the majority of individuals
with MCI also expressed multiple factors (Fig. S14).

The model parameters estimated from the AD dementia cohort were
used to infer factor loading in the Aβþ MCI participants, using only at-
rophy (“atrophy loading”) or only cognitive scores (“cognitive loading”).
GLMs were then utilized to investigate the relationship between atrophy
loading and cognitive loading in the AβþMCI participants (seeMethods).
We found that greater atrophy in posterior cortical regions (compared
with lateral temporal cortex) was associated with worse visuospatial
executive function (p ¼ 1e-3 corrected with FDR < 0.05, Fig. S16C).
Fig. 6. 10-fold cross-validation among AD
dementia patients in ADNI-GO/2. For each test
fold, the multimodal Bayesian model parameters
were estimated from the remaining nine training
folds, and then used to infer factor loadings in the
test fold subjects using only atrophy (“atrophy
loading”) or only cognitive scores (“cognitive
loading”). The prediction quality is measured by
the correlation of atrophy and cognitive loadings
across the test fold subjects, shown above for all
test folds. The x axis represents atrophy loading
and the y axis represents cognitive loading. Each
dot represents an AD patient. Red dots indicate
scatterplots for corresponding atrophy and
cognitive loadings. Blue dots indicate scatterplots
for non-corresponding atrophy and cognitive
loadings.



Fig. 7. Stability of factor loadings after one
year. Each red dot corresponds to an AD de-
mentia participant. The x axis represents the
probability of each factor at baseline and the y
axis represents the probability of each factor after
one year. (A) Atrophy-cognitive loading esti-
mated using both structural MRI and cognitive
scores. (B) Atrophy loading estimated using only
structural MRI. (C) Cognitive loading estimated
using cognitive scores. Factor loadings were
highly correlated between the baseline and one-
year follow up, and linear fits were close to the
y¼ x line (black) suggesting that the factors were
not merely reflecting disease stages.
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There was a trend that greater atrophy in posterior cortical regions
(compared with MTL regions) was associated with worse visuospatial
executive function (p¼ 0.04; Fig. S16C). There was no significant asso-
ciation for memory and language deficits (Figs. S16A–B).

3.3.3. Relationship between tau deposition and factor loading
The model parameters estimated from the AD dementia cohort were

used to infer atrophy-cognitive factor loading in 76 MCI participants,
using both atrophy and cognitive scores. GLMs were then utilized to
investigate the relationship between the factor loading and the spatial
distribution of Tau deposition (see Methods). Fig. 8A shows that partic-
ipants with higher Tau deposits in the medial temporal regions
(compared with lateral temporal and posterior cortical regions) exhibited
greater loading on the MTL-memory factor. On the other hand, partici-
pants with higher Tau signal in the lateral temporal and posterior cortical
regions (compared with medial temporal regions) exhibited higher
loading on the Posterior Cortical-Executive factor. However, there was
no association between Tau deposits and Lateral Temporal-Language
factor loadings.

When restricting our analysis to Aβþ MCI participants (N ¼ 32), the
directionalities of the results were consistent with the full sample
(Fig. S17). However, most results were no longer significant because of
the much smaller sample size. It is noteworthy that Tau signals within the
10
factors’ masks were significantly higher in Aβþ MCI than Aβ- MCI (p ¼
0.009). Thus, restricting analyses to the AβþMCI groupmay have limited
the range of Tau PET values in this analysis. For the purpose of visuali-
zation, Fig. S18 shows the across-participant correlations between the
atrophy-cognitive factor loadings and Tau deposition at each voxel.

4. Discussion

In a predominantly typical late-onset Alzheimer’s Disease cohort, we
identified three latent factors, capturing (1) medial temporal lobe atro-
phy associated with memory and orientation (“MTL-Memory”), (2)
lateral temporal lobe atrophy associated with language (“Lateral Tem-
poral-Language”), and (3) posterior cortical atrophy associated with ex-
ecutive function (“Posterior Cortical-Executive”). Although the
associations between the atrophy patterns and cognitive profiles were
weak in MCI participants, we identified associations between some
atrophy-cognitive factors and Tau PET. Specifically, greater Tau deposi-
tion in MTL regions were associated with greater loading on the MTL-
Memory factor, but lower loading on the Posterior Cortical-Executive
factor.

The contributions of this study are three-fold. First, we introduced a
multimodal Bayesian model that allowed the joint estimation of atrophy-
cognitive factors from VBM and cognitive scores simultaneously. We



Fig. 8. Associations between factor loadings and
Tau deposits in atrophied regions among ADNI-2/3
MCI participants. All p values remaining significant
after FDR (q< 0.05) are highlighted in blue. MTL, LT,
and PC indicate Tau deposition in the medial temporal
lobe, lateral temporal, and posterior cortical atrophied
regions respectively. Blue dots are estimated differ-
ences in regression coefficients between Tau deposits
in different atrophied regions and red bars show
standard errors. For example, in the bottom plot, the
blue dot of “PC – MTL” is on the right side (p¼ 2e-3),
which means that participants with greater Tau de-
posits in the posterior cortical regions (compared with
the medial temporal regions) exhibited greater factor
loading on the Posterior Cortical-Executive factor.
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demonstrated that our model was better than CCA in capturing the as-
sociations between atrophy patterns and cognitive profiles. Our model
might potentially be applied to other neurodegenerative or psychiatric
disorders that are known to demonstrate disease heterogeneity.

Second, unlike atypical clinically-defined AD subtypes, correspon-
dences between atrophy subtypes and cognitive domains are less clear in
typical AD dementia with most studies reporting that the cortical atrophy
subtype is associated with worse overall cognition and faster disease
progression. An exception is our previous study, which demonstrated
that the medial temporal atrophy factor was associated with worse
memory deficits, while the cortical atrophy factor was associated with
worse executive function deficits (Zhang et al., 2016). Here, we found a
novel Lateral Temporal-Language factor, which emerged only by
considering atrophy and cognition jointly.

Finally, a number of studies have found strong correspondences be-
tween the spatial patterns of tau depositions and cognitive domains in
cohorts mixing atypical clinically-defined AD subtypes and typical AD
dementia. However, in cohorts involving predominantly typical AD or
only MCI participants, the correspondences between the spatial patterns
of Tau deposition and cognitive domains are less clear. Our study is
therefore one of the first to demonstrate that the spatial pattern of tau
heterogeneity is associated with different atrophy-cognitive factors in
MCI participants.

4.1. Atrophy patterns

Our model revealed three factors with distinct atrophy patterns in AD
patients (Fig. 3). Two of these atrophy patterns were similar to results
from other studies (Whitwell et al., 2012; Noh et al., 2014; Byun et al.,
11
2015; Zhang et al., 2016; Young et al., 2018), while the third (lateral
temporal) atrophy pattern was a novel insight from the current modeling
approach. More specifically, the first factor was associated with prefer-
ential atrophy of the medial temporal lobe; the second factor was asso-
ciated with preferential atrophy of the lateral temporal cortex; and the
third factor was associated with preferential atrophy of the posterior
cortex. Our medial temporal atrophy pattern was similar to the “medial
temporal” subtype and our posterior cortical atrophy pattern was similar
to the “parietal dominant” subtype previously reported by Noh and col-
leagues (Noh et al., 2014).

Besides the anatomical subtypes, our medial temporal atrophy
pattern is similar to the “limbic predominant” Tau subtype, whereas the
lateral temporal and posterior cortical atrophy factors is similar to the
“hippocampal-sparing” Tau subtype (Murray et al., 2011; Whitwell et al.,
2012). Interestingly, the “hippocampal-sparing” subtype was associated
with younger age of dementia onset (Murray et al., 2011; Risacher et al.,
2017), and we found a similar younger age in our posterior
cortical-executive factor (Table S4). Overall, this seems to suggest that
cortical presentation is associated with younger age, whereas an MTL
presentation is associated with older age.

It is worth noting that Murray and colleagues likely examined a
mixture of early-onset and late-onset AD participants. For example, the
age of dementia onset for the hippocampal-sparing subtype was
63� 10, suggesting a majority of those participants were likely early-
onset AD. Consistent with Risacher et al. (2017) and our previous
study (Zhang et al., 2016), our current results show that differentiation
in participants’ age exists even within the limited age range found in
ADNI. However, similar to our previous study (Zhang et al., 2016), we
did not find an association between factor loadings and APOE ε4, while
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Risacher and colleagues found increased prevalence of APOE ε4 posi-
tivity in participants belonging to the hippocampal atrophy subtype
(consistent with Murray et al., 2011). Since Risacher et al. (2017),
Zhang et al. (2016) and our current study all utilized the ADNI database,
the discrepancy is likely a result of how the subtypes were defined,
rather than cohort differences.

4.2. Atrophy patterns and cognitive deficits

Our previous work exploring latent atrophy factors utilizing struc-
tural MRI alone identified “Temporal”, “Subcortical” and “Cortical”
patterns (Zhang et al., 2016). Although post-hoc analyses revealed that
the temporal atrophy factor was associated with worse memory perfor-
mance and the cortical atrophy factor was associated with worse exec-
utive function performance, the subcortical atrophy factor was not
associated with any behavioral performance (Zhang et al., 2016). Our
current study extends our previous work by flexibly examining cognitive
profiles using a data-driven approach, rather than restricting associations
with pre-defined summary measures of cognitive domains.

Indeed, each cognitive test can be thought of as an imperfect mea-
surement of some underlying cognitive construct. The test might be
imperfect in that it is only measuring part of the cognitive construct or it
might involve cognitive processes beyond the construct of interest,
random noise and measurement error. Here, the data-driven fusion of
multiple related cognitive tests seeks to better capture underlying
cognitive constructs, compared with using individual imperfect cognitive
tests.

In doing so, the current approach shed new insight into the link be-
tween atrophy and cognition compared to our previous work (Zhang
et al., 2016), For example, the MTL-Memory factor included not just
episodic memory measures (Crane et al., 2012), but also orientation to
time and place, which are also well-established functions associated with
the medial temporal lobe and hippocampus (O’Keefe and Dostrovsky,
1971; Squire et al., 2004; Hafting et al., 2005). Similarly, the Posterior
Cortical-Executive factor included various executive function measures
(e.g., “MMSE: attention” and “ADAS: number cancellation”), which were
not included in the ADNI executive function composite score (Gibbons
et al., 2012), but have been previously shown to related to posterior
parietal regions (Crutch et al., 2012; Wu et al., 2016).

Furthermore, the current analysis identified a new Lateral Temporal-
Language factor associated with lateral temporal atrophy and language
deficits. Interestingly, the distribution of scores across participants
(Fig. 5) revealed that the range of expression of the lateral temporal
factor was reduced compared to the medial temporal and posterior
cortical factors, suggesting that very few participants predominately
express this latent pattern. This restricted expressionmay explain whywe
did not identify this pattern when exploring MRI alone (Zhang et al.,
2016). However, this factor emerged when considering joint corre-
spondence between atrophy and cognition. Importantly, a previous study
(Domoto-Reilly et al., 2012) has shown that among participants with AD
dementia, deficits in the Boston naming test was associated with atrophy
of the anterior temporal lobe, which overlapped significantly with our
lateral temporal atrophy pattern.

In addition to implicating the lateral temporal cortex, the Lateral
Temporal-Language factor was also associated with atrophy in multiple
regions within the default network. A meta-analysis by Binder and col-
leagues has previously suggested that the left lateralized default network
is involved in language processing and semantic memory (Binder et al.,
2009). Traditionally, the default network has been thought to include
temporal lobe, precuneus and posterior cingulate cortex, medial pre-
frontal cortex, dorsal prefrontal cortex and the inferior parietal cortex
(Buckner et al., 2008; Yeo et al., 2011). However, previous work has also
suggested that the default network can be fractionated into different
functional subsystems (Laird et al., 2009; Andrews-Hanna et al., 2010;
Yeo et al., 2014). Our first and second factors appeared to fractionate the
default network in an interesting new way, where the medial temporal
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lobe was associated with the first factor, while the lateral temporal lobe
and other default network regions were associated with the second
factor.

Also noteworthy is that both the Lateral Temporal-Language and
Posterior Cortical-Executive factors were associated with different por-
tions of precuneus, which is consistent with the current understanding of
the functional heterogeneity of this region (Margulies et al., 2009; For-
nito et al., 2012). More specifically, the Posterior Cortical-Executive
factor appeared to be associated with portions of precuneus that has
been previously associated with the frontoparietal control network
(Fig. 1 of Fornito et al., 2012 and Figures 11 and 13 of Yeo et al., 2011).
On the other hand, the Lateral Temporal-Language factor appeared to be
associated with the precuneus/posterior cingulate core of the default
network (Fig. 1 of Fornito et al., 2012 and Figures 11 and 13 of Yeo et al.,
2011). Thus, although default network regions (in particular the pre-
cuneus) are consistently implicated in AD, the specific pattern of regions
involved might vary across individual patients.

Interestingly, focal and pronounced atrophy in these factors have
been consistently implicated in atypical variants of AD. Specifically,
Logopenic Aphasia (LPA) is associated with atrophy in regions found
within our Lateral Temporal-Language factor whereas patients with
posterior cortical atrophy (PCA) show atrophy in regions within our
Posterior Cortical-Executive factor (Gorno-Tempini et al., 2011; Crutch
et al., 2012). Thus, the emergence of similar patterns in the context of
typical late-onset AD in the current study suggests that vulnerability in
these brain networks exists along a continuum rather than being a spe-
cific feature to atypical presentations. It is possible that atypical clinical
variants represent the extreme end of a continuous distribution of deficits
across different cognitive domains.

4.3. Subtypes and stages

Due to the cross-sectional data used in this study, it is possible that
our factors reflect different disease stages along the continuum of AD
progression rather than heterogeneous disease subtypes (Ritchie and
Touchon, 1992). However, there are two reasons why our factors likely
reflected disease subtypes, rather than simply disease stages (Fonteijn
et al., 2012; Young et al., 2014, 2018). First, our factors reflected the
impairment of distinct cognitive domains, such as memory, language and
visuospatial executive function (Fig. 4). Second, one-year follow-up an-
alyses revealed that the atrophy and cognitive loadings of the three
factors were stable (Fig. 7). However, we note that the one-year stability
analysis is short and we cannot rule out the evolution of atrophy patterns
and cognitive profiles within an individual. See further discussion in the
next section.

4.4. Association with tau pathology

Tau aggregations into neurofibrillary tangles are a hallmark patho-
logical feature of Alzheimer’s disease (Braak and Braak, 1991), and are
consistently shown to correlate more strongly with cognitive functions
than Amyloid-β plaques (Nelson et al., 2012; Rolstad et al., 2013).
Excitingly, the advent of PET ligands that bind to Tau aggregations, such
as 18F-Flortaucipir (Chien et al., 2013), allows us to investigate the
relationship between the spatial distribution of Tau in vivo throughout
the course of Alzheimer’s disease (James et al., 2015; LaPoint et al.,
2017; Lowe et al., 2017; Sch€oll et al., 2017; Xia et al., 2017), and has been
shown to relate to clinical symptoms associated with atypical AD such as
Logopenic Aphasia and Posterior Cortical Atrophy (Ossenkoppele et al.,
2016).

Here, we extended the work of Ossenkoppele and colleagues by
examining Tau heterogeneity in a cohort comprising predominantly of
typical late-onset AD dementia participants (a population with a more
limited range of clinical deficits across non-memory domains). In the
context of typical late-onset AD, associations between regional 18F-
Flortaucipir and memory (or global cognition) have been identified
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earlier in the “typical” AD trajectory, among participants with MCI as
well as clinically normal older controls (Maass et al., 2017a, b; Vogel
et al., 2018). This is consistent with our findings that participants with
MCI, who had higher Tau deposits in medial temporal and hippocampus
regions, exhibited greater loadings on the MTL-Memory factor (Fig. 8A).
Furthermore, we extended these previous studies by showing that par-
ticipants with MCI, who had higher Tau deposits in posterior cortical
regions, were associated with greater loadings on the Posterior
Cortical-Executive factor (Fig. 8C). To the best of our knowledge, this is
the first study showing that distinct atrophy-cognitive factors are asso-
ciated with distinct patterns of Tau depositions in participants with
MCI. However, we did not find an association between Lateral
Temporal-Language factor loadings and tau PET in lateral temporal re-
gions (Fig. 8B). One might speculate that this factor should correlate with
measures of language such as semantic memory. Although we did not
find direct evidence for this, tests assessing language are sparse in the
ADNI neuropsychological battery. It is therefore possible that the current
analyses are limited in extracting a factor that robustly correlates with
language performance.

Unlike the Tau analysis, the cross-sectional associations between
atrophy patterns and cognitive profiles were weaker in MCI participants
compared with AD dementia participants in both the current study
(Fig. S16) and our previous study (Zhang et al., 2016). Furthermore,
while we could reliably estimate very similar atrophy factors in MCI and
AD dementia participants independently (Zhang et al., 2016), we could
not reliably estimate atrophy-cognitive factors when restricted to MCI
participants (results not shown). It is possible that the coupling between
the atrophy patterns and cognitive profiles might emerge later in the
disease process, which would explain the weak correlations among MCI.
Future studies that address the association between atrophy factors and
longitudinal cognition during the stages preceding overt dementia may
provide insight into this possibility, and provide more direct insights
into the time course of these changes. This is consistent with the
perspective that Tau-mediated injury is thought to occur earlier in the
disease process, followed by atrophy and cognitive decline (Jack et al.,
2010, 2013).
4.5. Limitations

Our study has several limitations. First, our Tau analysis utilized a
relatively small sample of 76 MCI participants. Second, to maximize
sample size, our Tau analysis included all MCI participants with Tau PET
data, regardless of amyloid status. Our control analyses using a smaller
sample of Aβþ MCI participants showed results consistent with the full
sample, but were generally not statistically significant. Consequently,
this affects the interpretability of our results.

We note that a recent paper demonstrated that the spatial patterns of
tau deposits were associated with different cognitive domains in a sample
comprising 25 Aβþ MCI and 48 Aβþ typical late-onset AD dementia
participants (Ossenkoppele et al., 2019). By restricting the sample to Aβþ
participants, the study provided a cleaner link to typical AD. However, by
mixing both MCI and AD dementia participants, the temporal staging of
the observations became less clear. Indeed, when the analysis was
restricted to the 25 Aβþ MCI participants, the results were no longer
significant (Ossenkoppele et al., 2019), similar to our control analysis of
Aβþ MCI participants (N ¼ 32). Therefore, our study and Ossenkoppele
et al. (2019) together suggest that a minimum sample size of about 70
Aβþ MCI participants might be necessary to demonstrate clear re-
lationships between Tau deposition patterns and cognitive domains
during the MCI stage of typical AD.

Finally, we note that higher tau deposition in the hippocampus may
be affected by the known off-target binding of 18F-flortaucipir to the
choroid plexus (Lee et al., 2018). Future studies should apply these ap-
proaches to second-generation Tau tracers (e.g., Lois, et al., 2018) that
may show reduced choroid plexus binding.
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4.6. Future work

Study-specific VBM templates for both ADNI-1 and ADNI-GO/2 have
been made publicly available, so other researchers can potentially utilize
the templates to estimate factor loadings in their own participants.
However, further studies are necessary to determine if the application of
ADNI templates to participants outside of ADNI might result in sub-
optimal results or biases.

The code for the MMLDA model has also been made publicly avail-
able. The model can potentially be applied to other heterogeneous
neurodegenerative disorders, such as Parkinson’s disease. Furthermore,
even though we have only utilized the model for two modalities, the
model can be easily extended to handle more than two modalities, e.g.,
atrophy, cognitive scores and Tau. However, this requires sufficient
number of participants with all modalities.

5. Conclusion

By utilizing the proposed multi-modal latent Dirichlet allocation
(MMLDA) model, our study revealed three latent AD factors with distinct
atrophy patterns and corresponding profiles of cognitive deficits. The
first factor was associated with medial temporal atrophy and deficits in
memory and orientation; the second factor was associated with lateral
temporal atrophy and language deficits; the third factor was associated
with posterior cortical atrophy and visuospatial executive function def-
icits. Our approach allowed each individual to express multiple factors to
various degrees, rather than assigning the individual to a single subtype.
This is biologically more plausible than non-overlapping subtypes, given
that multiple non-mutually exclusive factors likely influence this het-
erogeneity (such as age, co-morbid pathologies, genetics, exposures
throughout the lifespan, etc). Therefore, each participant exhibited his or
her own unique factor composition, which might potentially be exploited
to predict individual-specific cognitive profile that may improve disease
monitoring. Finally, our study suggested that these atrophy-cognitive
profiles were associated with distinct patterns of Tau deposition in
mild cognitively impaired participants, highlighting the emergence of
these subtypes early in the AD trajectory.
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